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MOMENT MATRICES, BORDER BASES AND REAL RADICAL

COMPUTATION

J.B. LASSERRE, M. LAURENT, B. MOURRAIN, PH. ROSTALSKI, AND PH. TRÉBUCHET

Abstract. In this paper, we describe new methods to compute the radical (resp. real
radical) of an ideal, assuming it complex (resp. real) variety is finte. The aim is to combine
approaches for solving a system of polynomial equations with dual methods which involve
moment matrices and semi-definite programming. While the border basis algorithms of
[17] are efficient and numerically stable for computing complex roots, algorithms based on
moment matrices [12] allow the incorporation of additional polynomials, e.g., to restrict the
computation to real roots or to eliminate multiple solutions. The proposed algorithm can
be used to compute a border basis of the input ideal and, as opposed to other approaches,
it can also compute the quotient structure of the (real) radical ideal directly, i.e., without
prior algebraic techniques such as Gröbner bases. It thus combines the strength of existing
algorithms and provides a unified treatment for the computation of border bases for the
ideal, the radical ideal and the real radical ideal.

1. Introduction

Many problems in mathematics and science can be reduced to the task of solving zero-
dimensional systems of polynomials. Existing methods for this task often compute all (real and
complex) roots. However, often only real solutions are significant and one needs to sieve out all
complex solutions afterwards in a separate step.

Typical approaches in this vein are the efficient homotopy continuation methods in the spirit
of [21], [19], recursive intersection techniques using rational univariate representation [9] in the
spirit of Kronecker’s work [11], Gröbner basis approaches using eigenvector computations or
rational univariate representation [5], [18], [8, chap. 4]. In the latter methods, emphasis is
put on exact input and computation. Using a different approach, Mourrain and Trébuchet
[17] have proposed an efficient numerical algorithm that uses border bases and the concept of
rewriting family. In particular, in the course of this algorithm, a distinguishing and remarkable
feature is a careful selection strategy for monomials serving as candidates for elements in a basis
of the quotient space K[x]/I (if I ⊂ K[x] is the ideal generated by the polynomials defining
the equations). As a result, at each iteration of the procedure, the candidate basis for the
quotient space K[x]/I contains only a small number of monomials (those associated with a
certain rewriting family). Another nice feature of this approach (and in contrast with Gröbner
base approaches) is its robustness with respect to perturbation of coefficients in the original
system.

On the other hand, Lasserre et al. [12] have proposed an alternative numerical method,
real algebraic in nature, to directly compute all real zeros without computing any complex
zero. This approach uses well established semi-definite programming techniques and numerical
linear algebra. Remarkably, all information needed is contained in the so-called quasi-Hankel
moment matrix with rows and columns indexed by the canonical monomial basis of K[x]d. Its
entries depend on the polynomials generating the ideal I and the underlying geometry when
this matrix is required to be positive semi-definite with maximum rank. A drawback of this
approach is the potentially large size of the positive semi-definite moment matrices to handle
in the course of the algorithm. Indeed, when the total degree is increased from d to d+ 1, the
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new moment matrix to consider has its rows and columns indexed by the canonical (monomial)
basis of K[x]d+1.

The goal of this paper is to combine a main feature of the border basis algorithm of [17]
(namely its careful selection of monomials, considered as candidates in a basis of the quotient
space K[x]/I) with the semi-definite approach of [12] for computing real zeros and an approach
for computing the radical ideal inspired by [10].

The main contribution of this paper is to describe a new algorithm which incorporates in the
border basis algorithm the positive semi-definiteness constraint of the moment matrix, which
are much easier to handle than the relaxation method of [12]. We show the termination of the
computation in the case where the real radical is zero-dimensional (even in cases where the
ideal is not zero-dimensional). A variant of the approach is also proposed, which yields a new
algorithm to compute the (complex) radical for zero-dimensional ideals.

In this new algorithm, the rows and columns involved in the semi-definite programming
problem are associated with the family of monomials (candidates for being in a basis of the
quotient space) and its border, i.e., a subset of monomials much smaller than the canonical
(monomial) basis of R[x]d considered in [12]. As a result, the (crucial) positive semi-definiteness
constraint is much easier to handle and solving problem instances of size much larger than those
in [12] can now be envisioned. A preliminary implementation of this new algorithm validate
experimentally these improvements on few benchmarks problems.

The approach differs from previous techniques such as [1] which involve complex radical com-
putation and factorisation or reduction to univariate polynomials, in that the new polynomials
needed to describe the real radical are computed directly from the input polynomials, using
SDP techniques.

The paper is organized as follows. Section 2 recalls the ingredients and properties involved
in the algebraic computation. Section 3 describes duality tools and Hankel operators involved
in the computation of (real) radical of ideals. In Section 4, we analyse the properties of the
truncated Hankel operators. In section 5, we describe the real radical and radical algorithms
and prove their correctness in section 6. Finally, Section 7 contains some illustrative examples
and experimentation results of a preliminary implementation.

2. Polynomials, dual space and quotient algebra

In this section, we set our notation and recall the eigenvalue techniques for solving polynomial
equations and the border basis method. These results will be used for showing the termination
of the radical border basis algorithm.

2.1. Ideals and varieties. Let K[x] be the set of the polynomials in the variables x =
(x1, . . . , xn), with coefficients in the field K. Hereafter, we will choose1 K = R or C. Let
K denotes the algebraic closure of K. For α ∈ Nn, xα = xα1

1 · · ·xαn
n is the monomial with expo-

nent α and degree |α| =
∑

i αi. The set of all monomials in x is denoted M = M(x). We say
that xα ≤ xβ if xα divides xβ , i.e., if α ≤ β coordinate-wise. For a polynomial f =

∑

α fαxα, its
support is supp(f) := {xα | fα $= 0}, the set of monomials occurring with a nonzero coefficient
in f .

For t ∈ N and S ⊆ K[x], we introduce the following sets:

• St is the set of elements of S of degree ≤ t,
• S[t] is the set of element of S of degree exactly t,
• 〈S〉 =

{∑

f∈S λf f | f ∈ S,λf ∈ K
}

is the linear span of S,

• (S) =
{∑

f∈S pf f | pf ∈ K[x], f ∈ S
}

is the ideal in K[x] generated by S,

1For notational simplicity, we will consider only these two fields in this paper, but R and C can be replaced
respectively by any real closed field and any field containing its algebraic closure)
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• 〈S | t〉 =
{∑

f∈St
pf f | pf ∈ K[x]t−deg(f)

}

is the vector space spanned by {xαf | f ∈
St, |α| ≤ t− deg(f)},

• S+ := S ∪ x1S ∪ . . . ∪ xnS is the prolongation of S by one degree,
• ∂S := S+ \ S is the border of S,

• S[t] := S
t times
+···+ is the result of applying t times the prolongation operator ‘+’ on S, with

S[1] = S+ and, by convention, S[0] = S.

Therefore, St = S∩K[x]t, S[t] = S∩K[x][t], S
[t] = {xαf | f ∈ S, |α| ≤ t}, 〈S | t〉 ⊆ (S)∩K[x]t =

(S)t, but the inclusion may be strict.
If B ⊆ M contains 1 then, for any monomial m ∈ M, there exists an integer k for which

m ∈ B[k]. The B-index of m, denoted by δB(m), is defined as the smallest integer k for which
m ∈ B[k].

A set of monomials B is said to be connected to 1 if 1 ∈ B and for every monomial m $= 1 in
B, m = xi0m

′ for some i0 ∈ [1, n] and m′ ∈ B.
Given a vector space E ⊆ K[x], its prolongation E+ := E+x1E+ . . .+xnE is again a vector

space.
The vector space E is said to be connected to 1 if 1 ∈ E and any non-constant polynomial

p ∈ E can be written as p = p0 +
∑n

i=1 xipi for some polynomials p0, pi ∈ E with deg(p0) ≤
deg(p), deg(pi) ≤ deg(p) − 1 for i ∈ [1, n]. Obviously, E is connected to 1 when E = 〈C〉 for
some monomial set C ⊆M which is connected to 1. Moreover, E+ = 〈C+〉 if E = 〈C〉.

Given an ideal I ⊆ K[x] and a field L ⊇ K, we denote by

VL(I) := {x ∈ L
n | f(x) = 0 ∀f ∈ I}

its associated variety in Ln. By convention V (I) = V
K
(I). For a set V ⊆ Kn, we define its

vanishing ideal

I(V ) := {f ∈ K[x] | f(v) = 0 ∀v ∈ V }.

Furthermore, we denote by
√
I := {f ∈ K[x] | fm ∈ I for some m ∈ N \ {0}}

the radical of I.
For K = R, we have V (I) = VC(I), but one may also be interested in the subset of real

solutions, namely the real variety VR(I) = V (I) ∩ Rn. The corresponding vanishing ideal is
I(VR(I)) and the real radical ideal is

R
√
I := {p ∈ R[x] | p2m +

∑

j

q2j ∈ I for some qj ∈ R[x],m ∈ N \ {0}}.

Obviously,

I ⊆
√
I ⊆ I(VC(I)), I ⊆ R

√
I ⊆ I(VR(I)).

An ideal I is said to be radical (resp., real radical) if I =
√
I (resp. I = R

√
I). Obviously,

I ⊆ I(V (I)) ⊆ I(VR(I)). Hence, if I ⊆ R[x] is real radical, then I is radical and moreover,
V (I) = VR(I) ⊆ Rn if |VR(I)| <∞.

The following two famous theorems relate vanishing and radical ideals:

Theorem 2.1.

(i) Hilbert’s Nullstellensatz (see, e.g., [6, §4.1])
√
I = I(VC(I)) for an ideal I ⊆ C[x].

(ii) Real Nullstellensatz (see, e.g., [3, §4.1]) R
√
I = I(VR(I)) for an ideal I ⊆ R[x].
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2.2. The quotient algebra. Given an ideal I ⊆ K[x], the quotient set K[x]/I consists of all
cosets [f ] := f + I = {f + q | q ∈ I} for f ∈ K[x], i.e., all equivalent classes of polynomials of
K[x] modulo the ideal I. The quotient set K[x]/I is an algebra with addition [f ]+ [g] := [f+g],
scalar multiplication λ[f ] := [λf ] and with multiplication [f ][g] := [fg], for λ ∈ R, f, g ∈ K[x].

A useful property is that, when I is zero-dimensional (i.e., |V
K
(I)| < ∞) then K[x]/I is

a finite-dimensional vector space and its dimension is related to the cardinality of V (I), as
indicated in Theorem 2.2 below.

Theorem 2.2. Let I be an ideal in K[x]. Then |V
K
(I)| <∞⇐⇒ dimK[x]/I <∞. Moreover,

|V
K
(I)| ≤ dim K[x]/I, with equality if and only if I is radical.

A proof of this theorem and a detailed treatment of the quotient algebra K[x]/I can be found
e.g., in [6], [8], [20].

Assume |V
K
(I)| < ∞ and set N := dimK[x]/I, |V

K
(I)| ≤ N < ∞. Consider a set B :=

{b1, . . . , bN} ⊆ K[x] for which {[b1], . . . , [bN ]} is a basis of K[x]/I; by abuse of language we also
say that B itself is a basis of K[x]/I. Then every f ∈ K[x] can be written in a unique way
as f =

∑N
i=1 cibi + p, where ci ∈ K, p ∈ I; the polynomial πI,B(f) :=

∑N
i=1 cibi is called the

remainder of f modulo I, or its normal form, with respect to the basis B. In other words, 〈B〉
and K[x]/I are isomorphic vector spaces.

2.2.1. Multiplication operators. Given a polynomial h ∈ K[x], we can define the multiplication
(by h) operator as

(1)
Xh : K[x]/I −→ K[x]/I

[f ] 2−→ Xh([f ]) := [hf ] ,

Assume that N := dimK[x]/I < ∞. Then the multiplication operator Xh can be represented
by its matrix, again denoted Xh for simplicity, with respect to a given basis B = {b1, . . . , bN}
of K[x]/I.

Namely, setting πI,B(hbj) :=
∑N

i=1 aijbi for some scalars aij ∈ K, the jth column of Xh

is the vector (aij)Ni=1. Define the vector ζB,v := (bj(v))Nj=1 ∈ K
N
, whose coordinates are the

evaluations of the polynomials bj ∈ B at the point v ∈ K
n
. The following famous result (see

e.g., [5, Chapter 2§4], [8]) relates the eigenvalues of the multiplication operators in K[x]/I to
the algebraic variety V (I). This result underlies the so-called eigenvalue method for solving
polynomial equations and plays a central role in many algorithms, also in the present paper.

Theorem 2.3. Let I be a zero-dimensional ideal in K[x], B a basis of K[x]/I, and h ∈ K[x].
The eigenvalues of the multiplication operator Xh are the evaluations h(v) of the polynomial h
at the points v ∈ V (I). Moreover, (Xh)T ζB,v = h(v)ζB,v and the set of common eigenvectors of
(Xh)h∈K[x] are up to a non-zero scalar multiple the vectors ζB,v for v ∈ V (I).

Throughout the paper we also denote by Xi := Xxi the matrix of the multiplication operator
by the variable xi. By the above theorem, the eigenvalues of the matrices Xi are the ith
coordinates of the points v ∈ V (I). Thus the task of solving a system of polynomial equations
is reduced to a task of numerical linear algebra once a basis of K[x]/I and a normal form
algorithm are available, permitting the construction of the multiplication matrices Xi.

2.3. Border bases. The eigenvalue method for solving polynomial equations from the above
section requires the knowledge of a basis of K[x]/I and an algorithm to compute the normal
form of a polynomial with respect to this basis. In this section we will recall a general method
for obtaining such a basis and a method to reduce polynomials to their normal form.

Throughout B ⊆M is a finite set of monomials.

Definition 2.4. A rewriting family F for a (monomial) set B is a set of polynomials F =
{fi}i∈I such that
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• supp(fi) ⊆ B+,
• fi has exactly one monomial in ∂B, denoted as γ(fi) and called the leading monomial
of fi. (The polynomial fi is normalized so that the coefficient of γ(fi) is 1.)

• if γ(fi) = γ(fj) then i = j.

Definition 2.5. We say that the rewriting family F is graded if deg(γ(f)) = deg(f) for all
f ∈ F .

Definition 2.6. A rewriting family F for B is said to be complete in degree t if it is graded
and satisfies (∂B)t ⊆ γ(F ); that is, each monomial m ∈ ∂B of degree at most t is the leading
monomial of some (necessarily unique) f ∈ F .

Definition 2.7. Let F be a rewriting family for B, complete in degree t. Let πF,B be the
projection on 〈B〉 along F defined recursively on the monomials m ∈Mt in the following way:

• if m ∈ Bt, then πF,B(m) = m,
• if m ∈ (∂B)t (= (B[1]\B[0])t), then πF,B(m) = m−f , where f is the (unique) polynomial
in F for which γ(f) = m,

• if m ∈ (B[k] \ B[k−1])t for some integer k ≥ 2, write m = xi0m
′, where m′ ∈ B[k−1] and

i0 ∈ [1, n] is the smallest possible variable index for which such a decomposition exists,
then πF,B(m) = πF,B(xi0 πF,B(m′)).

One can easily verify that deg(πF,B(m)) ≤ deg(m) for m ∈Mt. The map πF,B extends by
linearity to a linear map from K[x]t onto 〈B〉t. By construction, f = γ(f) − πF,B(γ(f)) and
πF,B(f) = 0 for all f ∈ Ft. The next theorems show that, under some natural commutativity
condition, the map πF,B coincides with the linear projection from K[x]t onto 〈B〉t along the
vector space 〈F | t〉, and they introduce the notion of border bases.

Definition 2.8. Let B ⊂M be connected to 1. A family F ⊂ K[x] is a border basis for B if it
is a rewriting family for B, complete in all degrees, and such that K[x] = 〈B〉 ⊕ (F ).

An algorithmic way to check that we have a border basis is based on the following result,
that we recall from [17]:

Theorem 2.9. Assume that B is connected to 1 and let F be a rewriting family for B, complete
in degree t ∈ N. Suppose that, for all m ∈Mt−2,

(2) πF,B(xi πF,B(xj m)) = πF,B(xj πF,B(xi m)) for all i, j ∈ [1, n].

Then πF,B coincides with the linear projection of K[x]t on 〈B〉t along the vector space 〈F | t〉;
that is, K[x]t = 〈B〉t ⊕ 〈F | t〉.
Proof. Equation (2) implies that any choice of decomposition of m ∈ Mt as a product of
variables yields the same result after applying πF,B. Indeed, let m = xi1 m

′ = xi2 m
′′ with i1 $=

i2 and m′,m′′ ∈Mt−1. Then there exists m′′′ ∈Mt−2 such that m′ = xi2 m
′′′, m′′ = xi1 m

′′′.
By the relation (2) we have:

πF,B(xi1 πF,B(m
′))

= πF,B(xi1 πF,B(xi2m
′′′)) = πF,B(xi2 πF,B(xi1m

′′′))

= πF,B(xi2 πF,B(m
′′)).

Let us prove by induction on l = deg(m) that for a monomial m = xi1 · · ·xil ∈Mt,

(3) πF,B(m) = πF,B(xi1πF,B(xi1 · · ·πF,B(xil ) · · · ),
does not depend on the order in which we take the monomials in the decomposition m =
xi1 · · ·xil :

• Either m ∈ B. As B is connected to 1, there exists i′ ∈ [1, n] and m′ ∈ Bt−1 such that
m = πF,B(m) = πF,B(xi′m′) = πF,B(xi′ πF,B(m′)), from which we deduce (3) using the
induction hypothesis applied to m′ and relation (2).
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• Or m $∈ B. Then, by definition of πF,B, there exists i′ ∈ [1, n] and m′ ∈ Mt−1 such
that πF,B(m) = πF,B(xi′ πF,B(m′)), from which we deduce (3) in a similar way using
the induction hypothesis applied to m′ and relation (2).

The map πF,B defines a projection of K[x]t on 〈B〉t. It suffices now to show that KerπF,B =
〈F | t〉. First we show that m−πF,B(m) ∈ 〈F | s〉 for all m ∈Ms, using induction on s = 0, . . . , t.
The base case s = 0 is obvious; indeed πF,B(1) = 1 since 1 ∈ B, and 0 ∈ 〈F | 0〉. Consider
m ∈ Ms+1. Write m = xi0m

′ where m′ ∈ Ms and πF,B(m) = πF,B(xi0πF,B(m′)) (recall
Definition 2.7). We have:

m− πF,B(m) = xi0(m
′ − πF,B(m

′))
︸ ︷︷ ︸

:=q

+ xi0πF,B(m
′)− πF,B(xi0πF,B(m

′))
︸ ︷︷ ︸

:=r

.

By the induction assumption, m′−πF,B(m′) ∈ 〈F | s〉 and thus q ∈ 〈F | s+ 1〉. Write πF,B(m′) =
∑

b∈Bs
λbb (λb ∈ K). Then, r =

∑

b∈Bs
λb(xi0b − πF,B(xi0b)), where xi0b − πF,B(xi0b) = 0 if

xi0b ∈ B, and xi0b− πF,B(xi0b) is a polynomial of Fs+1 otherwise. This implies r ∈ 〈F | s+ 1〉
and thus m − πF,B(m) ∈ 〈F | s+ 1〉. Thus we have shown that K[x]t = 〈B〉t + 〈F | t〉. Next,
observe that 〈F | t〉 ⊆ KerπF,B, which follows from the fact that Ft ⊆ KerπF,B together with
(3). This implies that 〈B〉t ∩ 〈F | t〉 = {0} and thus the equality 〈F | t〉 = KerπF,B. !

In order to have a simple test and effective way to test the commutation relations (2), we
introduce now the commutation polynomials.

Definition 2.10. Let F be a rewriting family and f, f ′ ∈ F . Let m,m′ be the smallest de-
gree monomials for which m γ(f) = m′ γ(f ′). Then the polynomial C(f, f ′) := mf −m′f ′ =
m′πF,B(f ′)−mπF,B(f) is called the commutation polynomial of f, f ′.

Definition 2.11. For a rewriting family F with respecet to B, we denote by C+(F ) the set of
polynomials of the form mf −m′ f ′, where f, f ′ ∈ F and m,m′ ∈ {0, 1, x1, . . . , xn} satisfy

• either m γ(f) = m′ γ(f ′),
• or m γ(f) ∈ B and m′ = 0.

Therefore, C+(F ) ⊂ 〈B+〉 and C+(F ) contains all commutation polynomials C(f, f ′) for
f, f ′ ∈ F whose monomial multipliers m,m′ are of degree ≤ 1. The next result can be deduced
using Theorem 2.9.

Theorem 2.12. Let B ⊂M be connected to 1 and let F be a rewriting family for B, complete
in degree t. If for all c ∈ C+(F ) of degree ≤ t, πF,B(c) = 0, then πF,B is the projection of K[x]t
on 〈B〉t along 〈F | t〉, ie. K[x]t = 〈B〉t ⊕ 〈F | t〉.

Proof. Let us prove by induction on t that if F is complete in degree t and for all c ∈ C+(F ) of
degree ≤ t, πF,B(c) = 0 then any m ∈Mt−2 satisfies (2), which in view of Theorem 2.9 suffices
to prove the theorem.

Let us first prove that (2) holds for m ∈ Bt−2. We distinguish several cases. If xim,xjm ∈ B
then (2) holds trivially. Suppose next that xim,xjm ∈ ∂B. Then, f := xim − πF,B(xim) and
f ′ := xjm − πF,B(xjm) belong to Ft−1. As xjγ(f) = xiγ(f ′), xjf − xif ′ ∈ C+(F ) and thus,
by our assumption, πF,B(xjf) = πF,B(xif ′), which gives (2). Suppose now that xim ∈ ∂B and
xjm ∈ B. As before f = xim − πF,B(xim) ∈ Ft−1. If xjγ(f) = xixjm ∈ B then xjf ∈ C+(F )
and thus πF,B(xjf) = 0 gives (2). Otherwise, xixjm ∈ ∂B and let f ′ := xixjm−πF,B(xixjm) ∈
Ft. Now, xjγ(f) = γ(f ′) implies xjf − f ′ ∈ C+(F ) and thus πF,B(xjf − f ′) = 0 which gives
again (2). This shows (2) in the case when m ∈ Bt−2, and thus we have

(4) πF,B(xi2πF,B(xi1b)) = πF,B(xi1πF,B(xi2b)) for all b ∈ 〈B〉t−2.

Let us now consider m ∈ Mt−2\Bt−2. By definition πF,B(xi m) = πF,B(xi′ πF,B(m′)) for
some m′ ∈Mt−2 and i′ ∈ [1, n] such that xi m = xi′ m′. If i $= i′ there exists m′′ ∈Mt−3 such
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that m = xi′ m′′,m′ = xi m′′. As F is also complete in degree t − 1 and for all c ∈ C+(F ) of
degree ≤ t− 1, πF,B(c) = 0, by induction hypothesis we have

πF,B(xi′ πF,B(xim
′′)) = πF,B(xi πF,B(xi′m

′′)),

so that πF,B(xi m) = πF,B(xi πF,B(m)). If i = i′, we have by definition πF,B(xi m) = πF,B(xi πF,B(m)).
As πF,B(m) = m for m ∈ Bt−2, we deduce that

(5) πF,B(xim) = πF,B(xiπF,B(m)) for all m ∈Mt−2, i ∈ [1, n].

Now, using (5), πF,B(xiπF,B(xjm)) is equal to πF,B(xiπF,B(xjπF,B(m))) which in turn is
equal to πF,B(xjπF,B(xiπF,B(m))) (using (4)) and thus to πF,B(xjπF,B(xim)) (using again (5)).
We can now apply Theorem 2.9 and conclude the proof. !

Theorem 2.13 (border basis, [17]). Let B ⊂ M be connected to 1 and let F be a rewriting
family for B, complete in any degree. Assume that πF,B(c) = 0 for all c ∈ C+(F ). Then B is
a basis of K[x]/(F ), K[x] = 〈B〉 ⊕ (F ), and (F )t = 〈F | t〉 for all t ∈ N; the set F is a border
basis of the ideal I = (F ) with respect to B.

Proof. By Theorem 2.12, K[x]t = 〈B〉t⊕〈F | t〉 for all t ∈ N. This implies that K[x] = 〈B〉⊕ (F )
and thus B is a basis of K[x]/(F ). Let us prove that (F )t = 〈F | t〉 for all t ∈ N. Obviously,
〈F | t〉 ⊂ (F )t. Conversely let p ∈ (F )t. Then p = r + q, where r ∈ 〈B〉t and q ∈ 〈F | t〉. Thus
p− q ∈ (F ) ∩ 〈B〉 = {0}, i.e., p = q ∈ 〈F | t〉. !

This implies the following characterization of border bases using the commutation property.

Corollary 2.14 (border basis, [16]). Let B ⊂ M be connected to 1 and let F be a rewriting
family for B, complete in any degree. If for all m ∈ B and all indices i, j ∈ [1, n], we have:

πF,B(xi πF,B(xj m)) = πF,B(xj πF,B(xi m)),

then B is a basis of K[x]/(F ), K[x] = 〈B〉 ⊕ (F ), and (F )t = 〈F | t〉 for all t ∈ N.

Proof. Same proof as for Theorem 2.13, using Theorem 2.9. !

3. Hankel Operators

In this section, we analyse the properties of Hankel operators and related moment matrices,
that we will need hereafter, for the moment matrix approach.

3.1. Linear forms on the polynomial ring. The set of K-linear forms from K[x] to K is
denoted by K[x]∗ := HomK(K[x],K) and called the dual space of K[x]. A typical element of
K[x]∗ is the evaluation at a point ζ ∈ Kn:

1ζ : p ∈ K[x] 2→ p(ζ) ∈ K.

Such evaluation can be composed with differentiation. Namely, for α ∈ Nn, the differential
functional:

1ζ · ∂α : p ∈ K[x] 2→
(

∂|α|

∂xα1

1 . . .∂xαn
n

p

)

(ζ)

evaluates at ζ the derivative ∂α of p. For α = 0, 1ζ · ∂0 = 1ζ . The dual basis of the monomial
basis (xα)α∈Nn of K[x] is denoted (dα)α∈Nn ; we have dα(xβ) = δα,β . In characteristic 0,
dα := 10 · 1∏n

i=1 αi!
∂α. Any element Λ ∈ K[x]∗ can be written as Λ =

∑

α Λ(x
α)dα. In

particular, 1ζ =
∑

α∈Nn ζαdα.
For S ⊂ K[x], we define

S⊥ := {Λ ∈ K[x]∗ | ∀p ∈ S Λ(p) = 0}.
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3.2. Hankel operators. The dual space K[x]∗ has a natural structure of K[x]-module which
is defined as follows: (p,Λ) ∈ K[x]×K[x]∗ 2→ p · Λ ∈ K[x]∗, where

p · Λ : q ∈ K[x] 2→ Λ(pq) ∈ K.

Note that, for any α,β ∈ Nn, we have

xβ · dα = dα−β if α ≥ β,

= 0 otherwise .

Definition 3.1. For Λ ∈ K[x]∗, the Hankel operator HΛ is the operator from K[x] to K[x]∗

defined by

HΛ : p ∈ K[x] 2→ p · Λ ∈ K[x]∗.

Lemma 3.2. For Λ ∈ K[x]∗, the matrix of the Hankel operator HΛ with respect to the bases
(xα) of K[x] and (dβ) of K[x]∗ is [HΛ] = (Λ(xα+β)).

Proof. Writing Λ =
∑

γ Λ(x
γ)dγ , we have:

HΛ(x
α) = xα · Λ =

∑

γ

Λ(xγ) xα · dγ =
∑

γ|γ≥α

Λ(xγ)dγ−α =
∑

β

Λ(xα+β)dβ .

!

We now summarize some well known properties of the kernel

KerHΛ = {p ∈ K[x] | p · Λ = 0, i.e., Λ(pq) = 0 ∀q ∈ K[x]}.
of the Hankel operator HΛ. Recall the definition of a Gorenstein algebra [4], [8, Chap. 8].

Definition 3.3. An algebra A is called Gorenstein if A and its dual space A∗ are isomorphic
A-modules.

Applying this definition to A := K[x]/KerHΛ yields

Lemma 3.4. KerHΛ is an ideal in K[x] and the quotient space A := K[x]/KerHΛ is a Goren-
stein algebra.

Proof. Direct verification, using HΛ as isomorphism in the proof of the second part of the
lemma. !

The focus of this paper is the computation of zero-dimensional varieties, which relates to
finite rank Hankel operators as shown in the following lemma.

Lemma 3.5. The rank of the operator HΛ is finite if and only if KerHΛ is a zero-dimensional
ideal, in which case dimK[x]/KerHΛ = rankHΛ.

Proof. Directly from the fact that, given p1, . . . , pr ∈ K[x], HΛ(p1), . . . , HΛ(pr) are linearly inde-
pendent in K[x]∗ if and only if the cosets [p1], . . . , [pr] are linearly independent in K[x]/KerHΛ.

!

The next theorem states a fundamental result in commutative algebra, namely that all zero-
dimensional polynomial ideals can be characterized using differential operators (see [8, Chap. 7],
[4, Thm. 2.2.7]). For the special case of zero-dimensional Gorenstein ideals, a single differential
form is enough to characterize the ideal.

Theorem 3.6. Let K = C and assume rankHΛ = r < ∞. Then there exist ζ1, . . . , ζd ∈ Cn

(with d ≤ r) and non-zero (differential) polynomials p1, . . . , pd ∈ C[∂], of the form pi(∂) =
∑

α∈Ai
ai,α∂α where Ai ⊂ Nn is finite and ai,α ∈ K, such that

(6) Λ =
d

∑

i=1

1ζi · pi(∂).
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For a zero-dimensional ideal I ⊂ K[x] with simple zeros V (I) = {ζ1, . . . , ζr} ⊂ Kn only, we
have I⊥ = 〈1ζ1 , . . . ,1ζr〉 and the ideal I is radical as a consequence of Hilbert’s Nullstellensatz.

In a similar way, we can now characterize the linear forms Λ for which KerHΛ is a radical
ideal.

Proposition 3.7. Let K = C and assume that rankHΛ = r < ∞. Then, the ideal KerHΛ is
radical if and only if

(7) Λ =
r

∑

i=1

λi1ζi with λi ∈ K− {0} and ζi ∈ K
n pairwise distinct,

in which case KerHΛ = I(ζ1, . . . , ζr) is the vanishing ideal of the ζi’s.

Proof. Assume first that KerHΛ is radical with V (KerHΛ) := {ζ1, . . . , ζr} ⊂ Kn. This implies
KerHΛ = I(V (KerHΛ)) = I(ζ1, . . . , ζr). Let pi ∈ C[x] be interpolation polynomials at the
points ζi, i.e., pi(ζj) = δi,j for i, j ≤ r. Then the set {p1, . . . , pr} is linearly independent in
A := K[x]/(KerHΛ) and thus is a basis of A. As the linear functionals Λ and

∑r
i=1 Λ(pi)1ζi

take the same values at each pi, we obtain: Λ =
∑r

i=1 Λ(pi)1ζi . Moreover, λi := Λ(pi) $= 0,
since rankHΛ = r.

Conversely assume that Λ is as in (7). The inclusion I(ζ1, . . . , ζr) ⊂ KerHΛ is obvious.
Consider now p ∈ KerHΛ and as before let pi ∈ K[x] be interpolation polynomials at the
ζi’s. Then 0 = Λ(p pi) = λip(ζi) implies p(ζi) = 0, thus showing p ∈ I(ζ1, . . . , ζr). As
KerHΛ = I(ζ1, . . . , ζr) is the vanishing ideal of a set of r points, it is radical by the Hilbert
Nullstellensatz. !

In a similar way, we can also characterize real radical ideals using Hankel operators.

Proposition 3.8. Let K = R and assume that rankHΛ = r < ∞. Then, the ideal KerHΛ is
real radical if and only if

(8) Λ =
r

∑

i=1

λi1ζi with λi ∈ R− {0} and ζi ∈ R
n pairwise distinct.

Proof. If KerHΛ is real radical then V (KerHΛ) = {ζ1, . . . , ζr} ⊂ Rn, so that (7) gives (8). Con-
versely, if Λ is as in (8), then KerHΛ is real radical, since

∑

j q
2
j ∈ KerHΛ implies

∑

j qj(ζi)
2 = 0

and thus qj(ζi) = 0, giving qj ∈ KerHΛ. !

Let us now recall a direct way to compute the radical of the ideal KerHΛ. First, consider
the quadratic form QΛ defined on K[x] by

QΛ : (p, q) ∈ K[x]2 2→ Λ(pq) ∈ K.(9)

Then, QΛ(p, q) = Λ(pq) = HΛ(p)(q) = HΛ(q)(p) for all p, q ∈ K[x], and the matrix of QΛ

in the monomial basis (xα) is [QΛ] = (Λ(xα+β)). We saw in Lemma 3.4 that the algebra
A = K[x]/KerHΛ is Gorenstein. An alternative characterisation of Gorenstein algebras states
that the above quadratic form QΛ defines a non-degenerate inner product on A (see eg. [8][chap.
9]). Assume now that rankHΛ = r <∞ so that dimA = r. Let b1, . . . , br be a basis of A and
let d1, . . . , dr be its dual basis in A for QΛ: it satisfies Λ(bi dj) = δi,j for i, j ∈ [1, r]. Then, for
any element a ∈ A, we have

(10) a =
r

∑

i=1

Λ(a di)bi.

In particular, we have the following property:

Proposition 3.9. Let ∆ :=
∑r

i=1 bi di. Given h ∈ A, let Xh be the corresponding multiplication
operator in A. We have

Trace(Xh) = Λ(h∆).
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Proof. By relation (10), the matrix of Xh in the basis (bi)i≤i≤r of A is (Λ(h bj di))1≤i,j≤r and
thus its trace is

Trace(Xh) =
r

∑

i=1

Λ(h bi di) = Λ(h∆).

!

As a direct consequence we deduce the following result (see e.g., [10]):

Theorem 3.10. Let K = C and assume rankHΛ = r < ∞. Let b1, . . . , br be a basis of AΛ,
d1, . . . , dr be its dual basis with respect to the inner product given by QΛ, and ∆ =

∑r
i=1 bi di.

Then the radical of KerHΛ is KerH∆·Λ.

Proof. Let I := KerHΛ. A polynomial h is in
√
I if and only if some power of h is in I

or, equivalently, if and only if Xh is nilpotent. By a classical algebraic property, the latter is
equivalent to Trace(XhXa) = 0 = Trace(Xha) for all a ∈ A. Indeed, as the operators Xh,Xa

commute, if Xh is nilpotent then so is XhXa and we have Trace(XhXa) = 0. Conversely if
Trace(XhXa) = 0 for all a ∈ A then, by Cayley-Hamilton identity, the characteristic polynomial
det(λI −Xh) of Xh is λr and thus Xh is nilpotent. By Proposition 3.9, we deduce that h ∈

√
I

if and only if Λ(∆ha) = 0 for all a ∈ AΛ, that is, if and only if h ∈ KerH∆·Λ. !

3.3. Positive linear forms. We now assume that K = R and consider the polynomial ring
R[x]. We first show that the kernel of a Hankel operator HΛ is a real radical ideal when
Λ ∈ R[x]∗ is positive. This result is crucial in the algorithm that computes the real radical of
an ideal.

Definition 3.11. We say that Λ ∈ R[x]∗ is positive, which we denote Λ " 0, if Λ(p2) # 0 for
all p ∈ R[x]. Equivalently, we will say HΛ " 0 if Λ " 0.

We will use the following simple observation.

Lemma 3.12. Assume Λ " 0. For p ∈ R[x], Λ(p2) = 0 implies p ∈ KerHΛ and thus Λ(p) = 0.
For Λ,Λ′ " 0, KerHΛ+Λ′ = KerHΛ ∩KerHΛ′ .

Proof. For any q ∈ R[x], t ∈ R, Λ((p+ tq)2) = t2Λ(q2)+2tΛ(p q) ≥ 0. Dividing by t and letting
t go to zero yields Λ(p q) = 0, thus showing p ∈ KerHΛ. The inclusion KerHΛ ∩ KerHΛ′ ⊂
KerHΛ+Λ′ is obvious. Conversely, let p ∈ KerHΛ+Λ′ . In particular, (Λ + Λ′)(p2) = 0, which
implies Λ(p2) = Λ′(p2) = 0 (since Λ(p2),Λ′(p2) ≥ 0) and thus p ∈ KerHΛ ∩KerHΛ′ . !

Proposition 3.13. If Λ " 0, then KerHΛ is a real radical ideal.

Proof. Assume
∑

i p
2
i ∈ KerHΛ; we show that pi ∈ KerHΛ. Indeed, (

∑

i p
2
i ) · Λ = 0 implies,

for all q ∈ R[x], 0 = Λ(
∑

i p
2
i q

2) =
∑

i Λ(p
2
i q

2) and thus Λ(p2i q
2) = 0. By Lemma 3.12, this in

turn implies Λ(piq) = 0 and thus pi ∈ KerHΛ. !

We saw in Proposition 3.8 that the kernel of a finite rank Hankel operator HΛ is real radical
if and only if Λ is a linear combination of evaluations at real points. We next observe that Λ is
positive precisely when Λ is a conic combination of evaluations at real points.

Proposition 3.14. Assume rankHΛ = r <∞. Then Λ " 0 if and only if Λ has a decomposi-
tion (8) with λi > 0 and distinct ζi ∈ Rn, in which case V (KerHΛ) = {ζ1, . . . , ζr} ⊂ Rn.

Proof. If Λ =
∑r

i=1 λi1ζi with λi > 0 and ζi ∈ Rn, then Λ " 0 holds obviously. Conversely,
assume that Λ " 0 then by Proposition 3.13 the ideal KerHΛ is real radical. By Proposition 3.8,
Λ has a decomposition (8) where λi = Λ(pi) $= 0, ζi ∈ Rn, and pi are interpolation polynomials
at the ζi’s. As p2i − pi ∈ I(ζ1, . . . , ζr) = KerHΛ, we have Λ(pi) = Λ(p2i ) ≥ 0, which concludes
the proof. !
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To motivate the next section, let us recall Lemma 3.5 and observe how it specializes to
truncated Hankel operators defined on subspaces of K[x]:

Lemma 3.15. Let B = {b1, . . . , br} ⊂ R[x] and Λ ∈ K[x]∗. The operator

HB
Λ : 〈B〉 → 〈B〉∗

p =
r

∑

i=1

λibi 2→ p · Λ

has a trivial kernel if and only if the cosets [b1], . . . , [br] ∈ K[x]/KerHΛ are linearly independent
in K[x]/KerHΛ.

Proof. Direct verification using the fact that KerHB
Λ = KerHΛ ∩ 〈B〉. !

Assume now that KerHΛ is zero-dimensional and that B = {b1, . . . , br} ⊂ K[x] is chosen
so that [b1], . . . , [br] form a basis of A = R[x]/KerHΛ. As in relation (9), we consider the
quadratic form QB

Λ on A defined by

QB
Λ : (p, q) ∈ A×A 2→ Λ(pq) ∈ K.

Note that a matrix representation of this form can be obtained by taking the principle submatrix
of [HΛ] indexed by B. Following [14], we recall under which conditions the bilinear form QB

Λ
relates to the Hermite form

Th : A×A→ K

(f, g) 2→ Trace(Xfgh)

for some h ∈ A.

Lemma 3.16. The quadratic form associated to QB
Λ coincides with the Hermite form Th for

some h ∈ A if and only if KerHΛ is radical.

Proof. See [14, Sec. 2.2]. !

4. Truncated Hankel Operators

We have seen in the previous section that the kernel of the Hankel operator associated to a
positive linear form is a real radical ideal. However, in order to be able to exploit this property
into an algorithm, we need to restrict our analysis to matrices of finite size. For this reason, we
consider here truncated Hankel operators, which will play a central role for the construction of
(real) radical ideals.

For E ⊂ K[x], set E · E := {p q | p, q ∈ E}. Suppose now E ⊂ K[x] is a vector space. A
linear form Λ defined on 〈E · E〉 yields the map HE

Λ : E → E∗ by HE
Λ (p) = p · Λ for p ∈ E.

Thus HE
Λ can be seen as a truncated Hankel operator, defined only on the subspace E.

Given a subspace E0 ⊂ E, Λ induces a linear map on 〈E0 ·E0〉 and we can consider the
induced truncated Hankel operator HE0

Λ : E0 → (E0)∗.

Definition 4.1. Given vector subspaces E0 ⊂ E ⊂ K[x] and Λ ∈ 〈E · E〉∗, HE
Λ is said to be a

flat extension of its restriction HE0

Λ to E0 if rankHE
Λ = rankHE0

Λ .

We now give some conditions ensuring that it is possible to construct a flat extension of a
given truncated Hankel operator. The next result extends an earlier result of Curto-Fialkow
[7]; a generalization of this result can be found in [2].

Theorem 4.2. [15] Consider a vector subspace E ⊂ K[x] and a linear function Λ on 〈E+ · E+〉.
Assume that E = 〈C〉 where C ⊂ M is connected to 1 and that rankHE+

Λ = rankHE
Λ . Then

there exists a (unique) linear function Λ̃ ∈ K[x]∗ which extends Λ, i.e., Λ̃(p) = Λ(p) for all

p ∈ 〈E+ ·E+〉, and satisfying rankHΛ̃ = rankHE+

Λ . In other words, the truncated Hankel

operator HE+

Λ has a (unique) flat extension to a (full) Hankel operator HΛ̃.
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In the following, we will deal with linear forms vanishing on a given set G of polynomials.

Definition 4.3. Given a vector space E ⊂ K[x] and G ⊂ 〈E · E〉, define the set

(11) LG,E := {Λ ∈ 〈E · E〉∗ | Λ(g) = 0 ∀g ∈ G}.
If K = R, define

(12) LG,E,( := {Λ ∈ LG,E | Λ(p2) ≥ 0 ∀p ∈ E}.
For an integer t ∈ N and G ⊂ K[x]2t, taking E = K[x]t, we abbreviate our notation and set
LG,t := LG,K[x]t and LG,t,( := LG,K[x]t,( when K = R.

4.1. Truncated Hankel operators and radical ideals. In this section, we assume that E
is a finite dimensional vector space. The following definition for generic elements of LG,E is
justified by Theorem 4.6 below.

Definition 4.4. Let G ⊂ 〈E ·E〉 where E is a finite dimensional subspace of K[x]. An element
Λ∗ ∈ LG,E is said to be generic if

(13) rankHE0

Λ∗ = max
Λ∈LG,E

rankHE0

Λ

for all subspaces E0 ⊂ E.

If L is a field containing K, we denote by LL
G,E := LG,E⊗L, the space obtained by considering

the vector spaces over L in (11). We recall here a classical result about generic properties over
field extensions, which will be used to give a simpler proof of a result that we need from [13].

Lemma 4.5. Let K be a field of characteristic 0 and L a field containing K. If Λ∗ is a generic
element in LK

G,E, then it is generic in LL
G,E.

Proof. The space of matrices HE
Λ for Λ ∈ LK

G,E is a vector space spanned by a basis H1, . . . , Hl

over K (resp. L). Let u1, . . . , ul be new variables and ρ be the maximal size of a non-zero minor

∈ K[u] of H(u) :=
∑l

i=1 uiHi. Then for any value of u ∈ Kl (resp. u ∈ Ll), the matrix H(u)
is of rank ≤ ρ. Since K is of characteristic 0 there exists u0 ∈ Kl with H(u0) of rank ρ, which
corresponds to a generic element in LK

G,E and in LL
G,E . !

Theorem 4.6. Let E be a finite dimensional subspace of K[x] and let G ⊂ 〈E · E〉. Assume
Λ∗ ∈ LG,E is generic, ie. satisfies (13). Then, KerHE

Λ∗ ⊂
√

(G).

Proof. By Lemma 4.5, Λ∗ is a generic element of LG,E over R or C and thus we can assume
that K = K. Let v ∈ V

K
(G), let 1v denotes the evaluation at v restricted to 〈E ·E〉 and let

f ∈ KerHE
Λ . Our objective is to show that f(v) = 0. Suppose for contradiction that f(v) $= 0.

Notice that 1v and Λ′ := Λ∗ + 1v belong to LG,E . As Λ′(f2) = f2(v) $= 0, f ∈ KerHE
Λ \

KerHE
Λ′ and by the maximality of the rank of HE

Λ KerHE
Λ′ $⊂ KerHE

Λ . Hence there exists
f ′ ∈ KerHE

Λ′ \KerHE
Λ . Then, 0 = HE

Λ′(f ′) = HE
Λ (f ′)+f ′(v)1v implies f ′(v) $= 0. On the other

hand,

0 = HE
Λ′(f ′)(f) = Λ′(ff ′) = Λ(ff ′) + f(v)f ′(v) = HE

Λ∗(f)(f ′) + f(v)f ′(v) = f(v)f ′(v),

yielding a contradiction. !

4.2. Truncated Hankel operators, positivity and real radical ideals. We first give a
result which relates the kernel of HE

Λ with the real radical of an ideal (G), when Λ is positive
and vanishes on a given set G of polynomials. We start with the following result, which
motivates our definition of the generic property for a positive linear form.

Proposition 4.7. For Λ∗ ∈ LG,E,(, the following assertions are equivalent:

(i) rankHE
Λ∗ = maxΛ∈LG,E,# rankHE

Λ .
(ii) KerHE

Λ∗ ⊂ KerHE
Λ for all Λ ∈ LG,E,(.
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(iii) rankHE0

Λ∗ = maxΛ∈LG,E,# rankHE0

Λ for any subspace E0 ⊂ E.

Call Λ∗ ∈ LG,E,( generic if it satisfies any of the equivalent conditions (i)–(iii) and set

KG,E,( := KerHE
Λ∗ for any generic Λ∗ ∈ LG,E,(.

Proof. (i) =⇒ (ii): Note that Λ + Λ∗ ∈ LG,E,( and KerHE
Λ+Λ∗ = KerHE

Λ ∩ KerHE
Λ∗ (using

Lemma 3.12). Hence, rankHE
Λ+Λ∗ ≥ rankHE

Λ∗ and thus equality holds. This implies that
KerHE

Λ+Λ∗ = KerHE
Λ∗ is thus contained in KerHE

Λ .

(ii) =⇒ (iii): Given E0 ⊂ E, we show that KerHE0

Λ∗ ⊂ KerHE0

Λ . By Lemma 3.12, we have
KerHE0

Λ∗ ⊂ KerHE
Λ∗ and, by the above, we have KerHE

Λ∗ ⊂ KerHE
Λ .

The implication (iii) =⇒ (i) is obvious. !

Lemma 4.8. let G0 ⊂ G ⊂ 〈E ·E〉. Then, KG0,E,! ⊂ KG,E,!.

Proof. Let Λ ∈ LG,E,( be a generic element, so that KerHE
Λ = KG,E,!. Obviously, Λ ∈

LG0,E,!, which implies that KerHE
Λ ⊇ KG0,E,!. !

Theorem 4.9. Let G ⊂ 〈E · E〉, where E is a finite dimensional subspace of R[x]. Then,
KG,E,! ⊂ R

√

(G).

Proof. Let Λ be a generic element of LG,E,!, so that KG,E,! = KerHE
Λ , and let v ∈ VR(G); we

show that KerHE
Λ ⊂ I(v). As 1v, the evaluation at v restricted to 〈E · E〉, belongs to LG,E,!,

we deduce using Proposition 4.7 that KerHE
Λ ⊂ KerHE

1v
⊂ I(v). This implies KerHE

Λ ⊂
I(VR(G)) = R

√
G. !

Given a subset F ⊂ R[x] and t ∈ N, consider for G the prolongation 〈F | 2t〉 of F to degree
2t, and the subspace E = R[x]t. For simplicity in the notation we set

(14) KF,t,! := K〈F | 2t〉,R[x]t,!,

which is thus contained in R

√

(F ), by Theorem 4.9. The next result (from [12]) shows that
equality holds for t large enough.

Theorem 4.10. [12] Let F ⊂ R[x]. There exists t0 > 0 such that (KF,t,!) = R

√

(F ) for all
t ≥ t0.

5. Algorithm

In this section, we describe the new algorithm to compute the (real) radical of an ideal. But
before, we recall the graded moment matrix approach for computing the real radical developed
in [13], and the border basis algorithm developed in [17].

5.1. The graded moment matrix algorithm. In the graded approach, the following family
of spaces is considered:

LF,t,( := L〈F | 2 t〉,R[x]t,(

= {Λ ∈ R[x]2 t | ∀f ∈ 〈F | 2 t〉,Λ(f) = 0 and∀p ∈ R[x]t,Λ(p
2) ≥ 0}.

For Λ ∈ LF,t,(, let Ht
Λ := HR[x]t

Λ .
Algorithm 5.1 presents the graded moment matrix algorithm described in [12].
This algorithm requires in the first step to solve semi-definite programming problems on

matrices of size the number of all monomials in degree t. This number is growing very quickly
with the degree when the number of variables is important, which significantly slows down the
performance of the method when several loops are necessary. The extension to compute the
radical is also possible with this approach by doubling the variables and by embedding the
problem over Cn in R2n. The correctness of the algorithm relies on Theorem 4.10 which comes
from [12].
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Algorithm 5.1: Graded Real Radical

Input: a finite family F of polynomials of R[x].
Set t := 1 and δ = max{deg(f), f ∈ F};

(1) Choose a generic Λ in LF,t,(;
(2) Check wether rankHs

Λ = rankHs+1
Λ for some s such that δ ≤ s < t;

(3) If not, increase t := t+ 1 and repeat from step (1);
(4) Compute KerHs

Λ;

Output: R

√

(F ) = (kerHs
Λ).

5.2. The border basis algorithm. Algorithm 5.2 presents the border basis algorithm de-
scribed in [17]. Hereafter, we analyze shortly the different steps.

Algorithm 5.2: Border Basis

Input: a family F of polynomials of K[x].
Set t := 0, B := {1}, G := ∅ and δ = max{deg(f), f ∈ F};

(1) Compute the reduction F̃ of Ft+1 on 〈B〉t+1 with respect to G;
(2) Set t′ := min{deg(p), p ∈ F̃ , p $= 0}− 1 ;
(3) Compute a minimal G̃ such that 〈G̃〉 := 〈G+, F̃ 〉 ∩ 〈B+〉t′+1;
(4) Set t′′ = min{deg(p), p ∈ G̃ ∩ 〈B〉, p $= 0}− 1; Compute B̃ connected to 1 such that
〈B+〉t′′+1 := 〈B̃〉t′′+1 ⊕ 〈G̃〉t′′+1;

(5) Compute a rewriting family G′′ of G̃t′′+1 with respect to B̃t′′+1;
(6) If G′′ $= G or B̃ $= B or t′′ < δ then set t := t′′ + 1, B := B̃, G := G′′ and repeat from

step (1);

Output: the border basis G of (F ) with respect to B.

In step (1), the reduction of a polynomial p by a rewriting family G for a set B consists
of the following procedure: For each monomial xα of the support of p which is of the form
xα = xi x

α′

xα
′′

with xα
′ ∈ B and xα

′′

of the smallest possible degree, if there exists an element
g = xi x

α′ − r ∈ G with r ∈ 〈B〉, then the monomial xα is replaced by xα
′′

r. This is repeated
until all monomials of the remainder are in B.

Step (3) consists of the following steps: take the coefficient matrix M = [M0|M1] of the
polynomials in G+ ∪ F̃ where the block M0 is indexed by the monomials in ∂B+ and the block
M1 is indexed by the monomials in B for a given ordering of the monomials, compute a row-
echelon reduction M̃ of M , and deduce the polynomials of G̃ corresponding to the non-zero
rows of M̃ . For p ∈ G̃ corresponding to a non-zero row of M̃ , the monomial indexing its
first non-zero coefficients is denoted γ(p). Notice that 〈G̃〉 := 〈G+, F̃ 〉 ∩ 〈B+〉t′+1 contains the
elements of C+(Gt′).

Step (4) consists

• of removing the monomials γ(p) for p ∈ 〈G̃t′′+1〉 ∩ 〈B〉t′′+1, and
• of adding the monomials in ∂B \ {γ(p) | p ∈ G̃} of degree ≤ t′′ + 1.

Step (5) consists of auto-reducing the polynomials p ∈ G̃ of degree ≤ t′′ so that γ(p) is the
only term of p in ∂B̃. This is done by inverting the coefficient matrix of G̃ with respect to the
monomials in ∂B̃. Notice that as 〈B+〉t′′+1 := 〈B̃〉t′′+1⊕〈G̃〉t′′+1, G̃ is complete in degree t′′+1.

In step (6), if the test is valid then the loop start again with G a rewriting family of degree
t with respect to B, which is by definition included in 〈B+〉t. Thus, at each loop, G̃ contains G
and C+(G) ⊂ 〈G+〉 ∩ 〈B+〉t+1 ⊂ 〈G̃〉.
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The algorithm stops if G′′ = G and B̃ = B and t ≥ δ. Then t′′ = t, G̃ = G and C+(G) ⊂
G̃ = G is reduced to 0 by G. If G is a rewriting family complete in degree t for B, we deduce by
Theorem 2.12 that πG,B is the projection of K[x]t on 〈B〉t along 〈G | t〉. As B̃ = B, we also have
t ≥ max{deg(b) | b ∈ B} so that G is a border basis with respect to B. As t ≥ δ, the elements
of F reduce to 0 by G ⊂ F . Thus (G) = (F ).

It is proved in [17] that this algorithm stops when the ideal (F ) is zero-dimensional. Thus
its output G is the border basis of the ideal (F ) with respect to B.

5.3. K-Radical Border Basis algorithm. Our new radical border basis algorithm can be
seen as a combination of the graded real radical algorithm and the border basis algorithm. The
modification of the border basis algorithm consists essentially of generating new elements of
the (real) radical of the ideal at each loop (step (1′) in Algorithm 5.3), and to use these new
relations (which are in the (real) radical by Theorem 4.6 and Theorem 4.9) in step (3). In the
case when K = C, a final stage is added to get the generators of the radical of a Gorenstein
ideal (step (7) below).

Algorithm 5.3: K-Radical Border Basis

Input: a family F of polynomials of K[x].
Set t = 0, B = {1}, and G = ∅;

(1′) Compute a (maximal) S ⊂ Bt+1 such that S · S can be reduced by G onto Bt+1 and
K := GenericKernelK(G,B, S);

(1) Compute the reduction F̃ of Ft+1 on 〈B+〉t+1 with respect to G;
(2) Set t′ := min{deg(p), p ∈ F̃ ∪K, p $= 0}− 1;
(3) Compute G̃ such that 〈G̃〉 := 〈G+, F̃ ,K〉 ∩ 〈B+〉t′+1;
(4) Compute B̃ connected to 1 and t′′ ≤ t′ maximal such that
〈B+〉t′′+1 := 〈B̃〉t′′+1 ⊕ 〈G̃〉t′′+1;

(5) Compute a rewriting family G′′ of G̃t′′+1 with respect to B̃;
(6) If G′′ $= G or B̃ $= B or t′′ < δ then set t := t′′ + 1, B := B̃, G := G′′ and repeat from

step (1);
(7) if K = C then [G,B] := Socle(G,B,Λ);

Output: The border basis G of the ideal K

√

(F ) with respect to B.

The two new ingredients that we describe below are the function GenericKernel (see
Algorithm 5.4) used to generate new polynomials in the (real) radical, and the function Socle
(see Algorithm 5.5) which computes the generators of the radical from the border basis of a
Gorenstein ideal when K = C.

Definition 5.1. Given a rewriting family F with respect to B and S = {xβ1 , . . . ,xβl}, we
define F red as the following family of polynomials : For all xβi ,xβj ∈ S such that πF,B(xβi+βj )
exists and is in 〈S · S〉, we define κβi+βj(x) = xβi+βj −πF,B(xβi+βj ) and κβi+βj = 0 otherwise.

With F red as in Definition 5.1, we are going to analyze the corresponding spaces LF red,S ,
LF red,S,(, KF red,S, KF red,S,(. Notice that by construction F red ⊂ 〈F | t〉where t = 2max{deg(s) |
s ∈ S}.

The construction of the generic kernel KF red,S (resp., KF red,S,!) is implemented by Algorithm
5.4. This routine is the one that is executed for finding effectively new equations in the (real)
radical.

Notice that primal-dual interior point solver implementing a self dual embedding do return
such a solution automatically. For a remark on how to use other solvers, see [12, Remark 4.15].
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Algorithm 5.4: GenericKernelK(F,B, S)
Input: A rewriting family F with respect to B allowing reduction for all the monomials

in S · S.
(1) If K = C, we construct an element Λ ∈ LF red,S such that HS

Λ has maximal rank, by
taking a generic element of the linear space LF red,S .

(2) If K = R, we construct an element of Λ ∈ LF red,S,! such that HS
Λ has maximal rank,

by computing an element in the relative interior of the feasible region of the following
semi-definite programming problem:

– H = (hα,β)α,β∈S " 0
– H satisfies the Hankel constraints h0,0 = 1, hα,β = hα′,β′ if α+ β = α′ + β′.
– H satisfies the linear constraints

∑

α hακβ,α = 0 for all β ∈ S · S such that
κβ =

∑

α κβ,α xα $= 0.
(3) Then we compute K as a basis of the kernel of HS

Λ .

Output: A family K of polynomials in K

√

(F ).

Algorithm 5.5: Socle(G,B,Λ)
Input: A border basis G for B connected to 1 and Λ ∈ 〈B · B〉∗ such that HB

Λ is invertible.

(1) Compute a dual basis of B = {b1, . . . , br} as follows: [d1, . . . , dr] = H−1[b1, . . . , br]
where H = (Λ(bibj))1≤i,j≤r is the matrix of HB

Λ ;
(2) Compute ∆ =

∑r
i=1 bi di and the matrix H∆ = (Λ(∆ bi bj))1≤i,j≤r by reduction of the

elements ∆ bi bj by G to linear combinations of elements in B;
(3) Compute G′ = kerH∆ and apply the normal form algorithm to G′ ∪G in order to

deduce a basis B̃ ⊂ B connected to 1 and a border basis G′′ for B̃ such that
(G′′) = (G′ ∪G) =

√
F .

Output: A basis B̃ connected to 1 and a border basis G′′ of
√

(F ) for B̃.

6. Correctness of the algorithms

In this section, we analyse separately the correctness of the algorithm over R and C.

6.1. Correctness for real radical computation. We prove first the correctness of Algorithm
5.3 over R.

Lemma 6.1. If G is a rewriting family complete in degree 2 t for B, then for Λ ∈ 〈G | 2 t〉⊥

KerHK[x]t
Λ ≡ KerHBt

Λ mod 〈G | t〉.

Proof. For Λ ∈ 〈G | 2 t〉⊥, we have

p ∈ KerHK[x]t
Λ ⇔ Λ(p q) = 0 ∀q ∈ K[x]t

⇔ Λ(b q) = 0 ∀q ∈ K[x]t where b ∈ 〈B〉t = p mod 〈G | t〉
⇔ Λ(b b′) = 0 ∀b ∈ 〈B〉t
⇔ b ∈ KerHBt

Λ .

Therefore
KerHK[x]t

Λ ≡ KerHBt
Λ mod 〈G | t〉,

which proves the equality of the two kernels modulo 〈G | t〉. !

Lemma 6.2. If G is a rewriting family complete in degree 2 t for B, such that K[x]2 t =
〈B〉2 t ⊕ 〈G | 2 t〉, then

〈KG,t,( | t〉 ≡ 〈KGred,Bt,( | t〉 mod 〈G | t〉.



MOMENT MATRICES, BORDER BASES AND REAL RADICAL COMPUTATION 17

Proof. Let Λ ∈ 〈G | 2 t〉⊥ be a generic element such that KG,t,( = KerHK[x]t
Λ . By Lemma 6.1

and Proposition 4.7, we have

KG,t,( = KerHK[x]t
Λ ≡ KerHBt

Λ mod 〈G | t〉 ⊃ KBt,( mod 〈G | t〉.

Conversely, let Λ ∈ 〈Gred〉⊥ be a generic element such that KG,Bt,( = KerHBt
Λ . As 〈Gred〉 ⊂

〈G | 2 t〉, there exists Λ̃ ∈ 〈G | 2 t〉⊥ which extends Λ to K[x]t. Then we have

KG,Bt,( = KerHBt
Λ = KerHBt

Λ̃

≡ KerHK[x]t
Λ̃

mod 〈G | t〉 ⊃ KG,t,( mod 〈G | t〉.

!

Lemma 6.3. If Algorithm 5.3 terminates with outputs G and B, then (G) = R

√

(F ) and B is a

basis of K[x]/ R

√

(F ).

Proof. If the algorithm stops, all boundary polynomials of C+(G) reduce to 0 byG. By Theorem
2.12, for all t we have K[x]2 t = 〈B〉2 t⊕〈G | 2 t〉. As KGred,Bt,( = {0} by Lemma 6.2, we deduce
that

KG,t,( ⊂ 〈G | t〉.
By Theorem 4.10, there exists s0 such that

(KF,s0,() =
R
√
I,

where I = (F ). By lemma 4.8, for t ≥ s0,

KF,s0,( ⊂ KG,t,( ⊂ 〈G | t〉 ⊂ R
√
I,

which implies that (G) = R
√
I. !

Proposition 6.4. Assume that VR(F ) is finite. Then the algorithm 5.3 terminates. It outputs
a border basis G for B connected to 1, such that R[x] = 〈B〉 ⊕ (G) and (G) = R

√
I.

Proof. First, we are going to prove by contradiction that when the number of real roots is finite,
the algorithm terminates.

Suppose that the loop goes for ever. Notice that at each step either G is extended by adding
new linearly independent polynomials or it moves to degree t+1. Since the number of linearly
independent polynomials added to G in degree ≤ t is finite, there is a step in the loop from
which G is not modified any more. In this case, all boundary C-polynomials of elements of G
of degree ≤ t are reduced to 0 by Gt. By Theorem 2.12, we have

(15) R[x]t = 〈B〉t ⊕ 〈Gt | t〉.
We have assumed that the loop goes for ever, thus this property is true for any degree t. By
Theorem 4.10, there exists s0 such that

(KF,s0/2,() =
R
√
I.

As any element of 〈F | s0〉 reduces to 0 by the rewriting family Gs0 , we have 〈F | s0〉 ⊂ 〈Gs0 | s0〉.
By Lemma 4.8, we deduce that

KF,s0/2,( ⊂ KGs0 ,s0/2,(
.

For a high enough number of loops, the set Gs0 is not modified and we have KGs0 ,Bs0/2,( = {0}.
Applying Lemma 6.2 using Equation (15), we have

KGs0 ,s0/2,(
⊂ 〈Gs0 | s0〉

By construction Gs0 ⊂
R
√
I, thus

(Gs0) =
R
√
I.
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Let B0 ⊂ R[x] which defines a basis in R[x]/ R
√
I and of smallest possible degree and let d0 be

the maximum degree of its elements. Then any monomial m of degree d0 + 1 is equal modulo
( R
√
I)d0+1 to an element b in 〈B0〉 of degree ≤ d0.
By Theorem 2.13,

〈Gd0+1 | d0 + 1〉 = (
R
√
I)d0+1,

thus m− b ∈ 〈Gd0+1 | d0 + 1〉 so that any monomial of degree d0 + 1 can be reduced by G to a
polynomial in K[x]d0

. Thus B = ∩f∈G(γ(f))c ⊂ R[x]d0
is finite and the algorithm terminates.

By Lemma 6.3, the algorithm outputs a border basis G with respect to B connected to 1,
such that (G) = R

√
I. !

6.2. Correctness for the radical computation. In this section, we show the correctness of
the algorithm for radical computation, that is with K = C.

Proposition 6.5. Assume that VC(F ) is finite. Then the algorithm 5.3 terminates and outputs
a border basis G for B connected to 1, such that (G) =

√
I and C[x] = 〈B〉 ⊕

√
I.

Proof. Since the family G contains the polynomials constructed by the normal form algorithm
[17] and as VC(I) is zero-dimensional, the normal form algorithm terminates and so do algorithm
5.3. When the loop stops, all boundary polynomials of C+(G) for any degree reduce to 0
by G and KGred,B = {0}. By Theorem 2.13, G is a border basis with respect to B. Let
Λ ∈ 〈B · B〉∗ such that KGred,B = KerHB

Λ . By definition of Λ and normal form property, if
f ∈ 〈B · B〉 ∩ (G) then f reduces to 0 by G and Λ(f) = 0. This shows that we can extend Λ
to Λ̃ ∈ C[x]∗ by Λ̃ = Λ on 〈B〉 and Λ̃ = 0 on (G). We deduce that (G) = KerHΛ̃ and that
AΛ = C[x]/KerHΛ̃ = C[x]/(G) is Gorenstein. Let d1, . . . , dr be the dual basis of B for QΛ and
∆ =

∑r
i=1 bi di. By Theorem 3.10, KerHB

∆·Λ computed in the function Socle, yields a new
basis B′ connected to 1 and a new border basis G′ such that (G′) =

√
I. !

7. Examples

This section contains two very simple examples which illustrate the effect of the SDP solution
in one loop of the Real Radical Border Basis algorithm. The results in the next example are
coming from a C++ implementation available in the package newmac of the project mathemagix.
It uses a version of lapack with templated coefficients and sdpa 2 with extended precision so
that all the computation can be run with extended precision arithmetic.

7.1. A univariate example. We give here a simple example in one variable to show how the
real roots can be separated from the complex roots, using this algorithm. We consider the
polynomial f = x4 − x3 − x + 1 with a single real root x = 1 of multiplicity 2. In the routine
GenericKernel of the algorithm, a 4× 4 matrix H is constructed and the linear constraints
deduced from the relations x4 ≡ x3 + x− 1, x5 ≡ x3 + x2 − 1, x6 ≡ 2 x3 − 1 modulo f imposes
the following form:

H :=







1 a b c
a b c c+ a− 1
b c c+ a− 1 c+ b− 1
c c+ a− 1 c+ b− 1 2 c− 1







.

where a = Λ(x), b = Λ(x2), c = Λ(x3). The SDP solver yields the solution






1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1







2http://sdpa.sourceforge.net/
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which kernel is 〈x − 1, x2 − x, x3 − x2〉. Thus the output of the algorithm is (x − 1) the real
radical of (f), the basis B = {1} and the real root x = 1.

7.2. A very simple bivariate example. Let f1 = x2 + y2 and F = {f1} ⊂ R[x, y]. The
algorithm computes the following:

− B = M− (y2)
− We compute GenericKernel in degree 1 by choosing S = {1, x, y} with S · S ⊃

support f1.
The SDP problem to solve reads as follows: find h = [a, b, c, d] ∈ R4 such that

H =





1 a b
a c d
b d −c



 " 0

and has of maximal rank. Here a = Λ(x), b = Λ(y), c = Λ(x2), d = Λ(x y). The
condition H " 0 implies that
− c = 0,
− a = 0, b = 0, d = 0.

and consequently that kerH = 〈x, y〉. Thus x, y are returned by GenericKernel and
added to F .

− After one iteration the border basis algorithm stops and we obtain B = {1} and
R

√

(x2 + y2) = (x, y).

7.3. Numerical example. The tables below compare the size of the SDP problems to solve in
our approach and in the method described in [12]. The degree indicates the degree in the loop
of the Border Basis Real radical algorithm, n.sdp is the size of matrices in the corresponding
SDP problem and n.constraints the number of linear constraints involved, t is the degree of
the relaxation problem in [12] and n.sdp grad. rel. the size of matrices in the corresponding
SDP problem.

Katsura 4
degree n.sdp n.constraints t n.sdp grad. rel.

2 5 5 2 56
4 11 67 2 56
6 16 176 2 56

Katsura 5
degree n.sdp n.constraints t n.sdp grad. rel.

2 6 6 3 84
4 16 146 3 84
6 26 479 3 84
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bifur
degree n.sdp n.constraints t n.sdp grad. rel.

2 4 2 8 165
4 9 32 8 165
6 16 150 8 165
8 25 446 8 165
8 16 152 8 165
8 16 153 8 165
6 16 158 8 165
6 16 162 8 165
4 9 34 8 165
6 16 168 8 165
6 16 169 8 165
4 9 36 8 165
6 16 177 8 165
4 4 3 8 165
4 8 37 8 165

The tables below give the time for computing the real radical with the solvers sdpa3 or csdp4

integrated into the border basis algorithm available in the package newmac of mathemagix.

Example TR Gen. Ker. CSDP SVD Drop Deg DegC NR NC TC

Precision 90
kat4 22.479s 22.281s 22.1645 1e− 12 4 4 12 16 0.06s
kat5 146.49s 146.29s 145.64s 1e− 12 5 5 16 32 0.165s
cyclo 10.839s 10.7646s 10.6243s 1e− 20 5 5 4 16 0.03s
robot 41.84s 41.52s 41.26s 1e− 19 6 8 4 40 1.3s

Precision 120
kat4 22.557s 22.28s 22.16 1e− 14 4 4 12 16 0.06s
kat5 146.59s 146.39s 145.1s 1e− 12 5 5 16 32 0.17s
cyclo 10.839s 10.7646s 10.6243s 1e− 20 5 5 4 16 0.03s
robot 42.884s 42.5216s 42.2447s 1e− 19 6 8 4 40 1.4s

A precision of 90 or 120 bits is used during the computation but unfortunately the SDP solver
is very, very, very slow for this precision. A strange behavior/bug of the parameter used in the
relaxation of the barrier function is observed. The solution of this problem is in progress.

Example TR Gen. Ker. SDPA−GMP SV D Drop Deg DegC NR NC TC

Precision 90
kat4 4.18s 4.12s 3.26 1e− 18 4 4 12 16 0.06
kat5 26.28s 26.01s 23.16s 1e− 18 5 5 16 32 0.165
cyclo 10, 95 10.77 10.64 1e− 20 5 5 4 16 0.03
robot 19, 84 19.52 19.26 1e− 19 6 8 4 40 1.3s

Using SDPA-gmp as the solver allows us a great improvement in efficiency though we expect
futher improvements improving both the way connection with SDPA-gmp is operated and better
tuning the parameters SDPA.
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